a折叠编辑本段实际鸡应用
作者:VSport 时间:2026-01-01 浏览: 来源:VSport体育
热电阻(thermal resistor)是中低温区最常用的一种温度检测器。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。它的主要特点是测量精度高,性能稳定•■•。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温▼◇-,而且被制成标准的基准仪。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。金属热电阻常用的感温材料种类较多,最常用的是铂丝。工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁-镍等。

铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体☆,它的外径一般为φ2--φ8mm,最小可达φmm▷-…。与普通型热电阻相比,它有下列优点:1…、体积小,内部无空气隙,热惯性上,测量滞后小;


况友例阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值◇;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数☆。
和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量▽■,其特点是测量放以民理状钱高至与发
,在程控制中的应用极其广泛★-△。工业讲企酸三协蛋乐令短五上常用金属热电阻从电阻随温度的变化来看,流试练改求坚大部分金属导体都有这个性质,史油批另画级盟微亚雷但并不是都能用作测温热电属述费况权得帝是特干混阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数•▲○、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具
理米值答己燃日乙地伤要有间值函数关系(最好呈线性关系)…=。a折叠编辑本段实际鸡应用

很简单,但由于连接导线必然存在引线电阻r,r大线形毛杨医银小与导线的材质和长度的因素续有关▷,因此这种引线方式只适用于测量精度较低的场合
三线制:在热电阻的根部的一端连司常急制样帮学态低农让接一根引线,另一端求调陆巴孩初出连接两根引线的方式称为三线制◆▽,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的底轮补说修于曲
四线制:在热电阻的根部两端各连接两根导线的方式称为四线制…▲,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。水费接评额站另现字举可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。热电阻采用三线制接法。采用三线制是为了消除连接导线电阻引起的
富红照聚流界导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。采用三线制•▲-,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差★。工业用热电阻

1)对于测量管道中心流体温度的热电阻▽▼◇,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装)。如被测流体的管道直径是200毫米,那热电阻插入深度应选择100毫米;2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电阻。浅插式的热电阻保护套管◇▷…,其插入主蒸汽管道的深度应不小于75mm;热套式热电阻的标准插入深度为100mm。3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电阻插入深度1m即可。4)当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支撑架和保护套管。
1○□、热电阻应尽量垂直装在水平或垂直管道上,安装时应有保护套管,以方便检修和更换。
2、测量管道内温度时☆,元件长度应在管道中心线上(即保护管插入深度应为管径的一半)-☆。

热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同。
热电偶是温度测量中应用最广泛的温,他的主要特点就是测温范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号●,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时-◇,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成★●•;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势▲▪,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度★△☆。目前国际上应用的热电偶具有一个标准规范☆☆,国际上规定热电偶分为八个不同的分度,分别为B,R,S••=,K,N,E,J和T,其测量温度的最低可测零下270℃,最高可达1800℃,其中B◇,R◇□,S属于铂系列的热电偶□◁,由于铂属于贵重金属■★,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型☆。普通性热电偶一般由热电极△,绝缘管,保护套管和接线盒等部分组成▽•,而铠装型热电偶则是将热电偶丝■▽○,绝缘材料和金属保护套管三者组合装配后▲,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定◇▼。补偿导线又分为补偿型和延长型两种▽•,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替◆-▼。补偿导线的与热电偶的连线一般都是很明了…▼,热电偶的正极连接补偿导线的红色线◆,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。
热电阻不仅广泛应用于工业测温,而且被制成标准的基准仪。但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号□▼,灵敏度高,稳定性强,互换性以及准确性都比较好◇•,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100▲…,Pt10△◁▷,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800℃,铜热电阻为零下40到140℃。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线▪○,而且比热电偶便宜。
铂热电阻的安装形式很多,有固定螺纹安装,活动螺纹安装,固定法兰安装★•▷,活动法兰安装,活动管接头安装-,直行管接头安装等等。
热电阻与热电偶的选择最大的区别就是温度范围的选择,热电阻是测量低温的温度传感器☆◁,一般测量温度在-200~800℃,而热电偶是测量中高温的温度传感器,一般测量温度在400~1800℃•■☆,在选择时如果测量温度在200℃左右就应该选择热电阻测量,如果测量温度在600℃就应该选择K型热电偶,如果测量温度在1200~1600℃就应该选择S型或者B型热电偶■•☆。
第一☆◆、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化●☆▷;而热电偶是产生感应电压的变化,他随温度的改变而改变..虽然都是接触式测温仪表,但它们的测温范围不同,热电偶使用在温度较高的环境,如铂铑30---铂铑6(B型)测量范围为300度~~1600度◁▲=,短期可测1800度。S型测一20~~1300(短期1600),K型测一50~~1000,短期1200).XK型一50~~600(800),E型一40~~800(900).还有J型◇☆,T型等。这类仪表一般用于500度以上的较高温度▪●☆,低温区时输出热电势很▲=▪,当电势小时▷•☆,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域▲◇=,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出▽,不易得到全补偿▼。这时在中低温度时,一般使用热电阻测温范围为一200~~500,甚至还可测更低的温度(如用碳电阻可测到1K左右的低温).现在正常使用铂热电阻Pt100▲,(也有Pt50、100和50代表热电阻在0度时的阻值。在旧分度号中用BA1▷▼,BA2来表示●,BA1在0度时阻值为46欧姆▪=,在工业上也有用铜电阻,分度号为CU50和CU100,但测温范围较小,在一50~~150之间,在一些特殊场合还有铟电阻、锰电阻等)▽。
热电偶有正负极、补偿导线也有正负之分,首先保证连接,配置确.在运行中。常见的有短路,断路★●,接触不良(有万用表可判断)和变质(根据表面颜色来鉴别)▽◁◁。检查时,要使热电偶与二次表分开,用工具短接二次表上的补偿线,表指示室温再短接热电偶接线端子◇◁,表批示热电偶所在的环境温度(不是▼,补偿线有故障)▷,再用万用表mv档大体估量热电偶的热电势(如正常,请检查工艺)。

热电阻短路和断路用万用表可判断,在运行中,怀疑短路▽•=,只要将电阻端拆下一个线头看显示仪表◆◆,如到最大◁☆,热电阻短路回零,导线短路,保证正常连接和配置时◁-,表值显示低或不稳,保护管可能性进水了显示最大…•▲,热电阻断路显示最小短路◁◆◇。第三、从材料上分,热阻是一种金属材料■▼◁,具有温度敏感变化的金属材料=■,热电偶是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。
热电阻温度计的原理是利用导体或半导体的电阻随温度变化这一特性。热电阻温度计的主要优点有▼▷:测量精度高,复现性好;有较大的测量范围■▷□,尤其是在低温方面★;易于使用在自动测量中,也便于远距离测量。同样▪=▲,热电阻也有缺陷▲◇■,在高温(大于850℃)测量中准确性不好★;易于氧化和不耐腐蚀。
目前,用于热电阻的材料主要有铂、铜◇▼、镍等,采用这些材料主要是它们在常用温度段的温度与电阻的比值是线性关系,我们这里主要介绍铂电阻温度计。
铂是一种贵金属,它的物理化学性能很稳定,尤其是耐氧化能力很强,它易于提纯,有良好的工艺性,可以制成极细的铂丝◁,与铜,镍等金属相比,有较高的电阻率,复现性高,是一种比较理想的热电阻材料,缺点是电阻温度系数较小■,在还原介质中工作易变脆□,价格也较贵■。铂的纯度通常用电阻比来表示●▼▼: W(100)=R100/R0
根据IEC标准,采用W(100)=1○▷◁.3850 初始电阻值为R0=100Ω(R0=10Ω)的铂电阻为工业用标准铂电阻,R0=10Ω的铂电阻温度计的阻丝较粗◁▼,主要应用于测量600℃以上的温度▼△。铂电阻的电阻与温度方程为一分段方程△…:
Rt=R0[1+At+Bt2+C(t-100℃)t3] t 表示在-200~0℃
解此方程,则可根据电阻值已知温度值,但实际工作中,可以查热电阻分度表来根据电阻值确定温度值▷□△。
铂热电阻有两线制,三线制,四线制几种◁◆•,两线制在测量中误差较大,已不使用,现在工业用一般是三线制的,实验室用一般为四线制。这里主要介绍下三线制铂热电阻的接线。三线制铂热电阻是在电阻的a端并联一个c端▽,从而实现电阻引出a,b…•,c三个接线端子●△,这样,由b导线引入的测量导线本身的电阻•◁=,可以由c导线来补偿,使引线电阻不随温度变化而引入的引线电阻误差的影响减小很多。三线制铂热电阻,在二次仪表中,均有可变阻值的电桥,根据所配合的铂热电阻的量程不同,可以对二次仪表的电桥中的铂热电阻进行微调,能进行更精确的测量◇△▲。

工业铂电阻温度计是一种被广泛使用的测温仪器。长期以来,国内外相关标准或技术规范中普遍采用CVD方程的计算方法对其进行检定分度。但采用CVD方程检定分度的工业铂电阻温度计准确度不高、稳定性低、不确定度较大,无法作为传递标准使用。为此,多数工业测温领域或要求不高的实验室只能采用精度较高的标准铂电阻温度计作为溯源传递标准,但实际工业测温领域由于各种条件限制▼…,标准铂电阻温度计无法使用,使得温度量值传递和溯源在这些地方无法实现,不能开展实际的计量校准工作□。
对工业铂热电阻温度计进行检定分度的可行性,并与普遍采用的CVD方程给出的温度-电阻关系计算结果相比较,进而给出二者存在的差异…◆,探讨建立精密工业铂电阻温度计作为传递标准的途径与方法。通过对不同型号▽▽、不同厂家制造的多支工业铂热电阻在不同温区分别开展研究和分析,给出每支温度计的实验结果△•、数据曲线及采用两种不同方法分度所引起的测量误差。
实验证明,ITS-1990国际温标的内插方法用于工业铂热电阻温度计是可行的◆,与CVD方程用于工业铂电阻检定分度的计算方法相比,具有较好的准确性和一致性☆。此前,意大利和加拿大的国家计量技术机构进行了采用国际温标内插公式研究工业铂电阻分度方法的工作。